Test Code TREGS T-Cell Subsets, Regulatory (Tregs), Blood
Reporting Name
T Cell Subsets, Regulatory (Tregs)Useful For
Evaluating patients with clinical features of IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked inheritance) and other primary immunodeficiencies, autoimmune diseases, allergy and asthma, and graft-vs-host disease post-hematopoietic stem cell transplantation
Method Name
Flow Cytometry
Performing Laboratory
Mayo Clinic Laboratories in RochesterSpecimen Type
Whole Blood EDTAShipping Instructions
Testing performed Monday through Friday. Specimens not received by 4 p.m. Central time on Fridays may be canceled
Specimens arriving on the weekend and observed holidays may be canceled.
Collect and package specimen as close to shipping time as possible. It is recommended that specimens arrive within 24 hours of collection.
Necessary Information
The ordering healthcare professional's name and phone number are required.
Specimen Required
Container/Tube: Lavender top (EDTA)
Specimen Volume: 3 mL
Collection Instructions: Send whole blood specimen in original tube. Do not aliquot.
Additional Information: For serial monitoring, it is recommended that specimens are collected at the same time of day.
Specimen Minimum Volume
1 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Whole Blood EDTA | Ambient | 72 hours | PURPLE OR PINK TOP/EDTA |
Reject Due To
Gross hemolysis | Reject |
Gross lipemia | Reject |
Reference Values
The appropriate age-related reference values will be provided on the report.
Day(s) Performed
Monday through Friday
CPT Code Information
86359
86361
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
TREGS | T Cell Subsets, Regulatory (Tregs) | 90413-6 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
609282 | CD4 (T Cells) | 24467-3 |
29143 | % Activated CD4+ T cells (4+CD25+) | 13332-2 |
29144 | % Natural Tregs | 89320-6 |
29145 | % N. Naive Tregs | 89319-8 |
29146 | % CD4+CD25-CD127+ (Tr1/Th3) | 89318-0 |
29147 | Activated CD4+ T cells (4+CD25+) | 26982-9 |
29148 | CD4+CD25+CD127loCD45RO+ (Nat Tregs) | 89316-4 |
29149 | CD4+CD25+CD127loCD45RA+ Naive Tregs | 89315-6 |
29150 | CD4+CD25-CD127+ (Tr1/Th3) | 89317-2 |
29177 | Interpretation | 69052-9 |
Clinical Information
Regulatory T cells (Tregs) are a population of CD4+ T cells with a unique role in the immune response. Tregs are crucial in suppressing aberrant pathological immune responses in autoimmune diseases, transplantation, and graft-vs-host disease after allogeneic hematopoietic stem cell transplantation.(1) Tregs are activated through the specific T-cell receptor, but their effector function is nonspecific, and they regulate the local inflammatory response through cell-to-cell contact and cytokine secretion.(2) Tregs secrete interleukin (IL)-9, IL-10, and transforming growth factor-beta 1 (TGF-beta 1), which aid in the mediation of immunosuppressive activity.
Chief characteristics of the Treg population are surface expression of the CD25 protein (IL-2Ra) and the intracellular presence of the transcription factor FOXP3. The IL-7 receptor (CD127) is downregulated on FOXP3+CD4+CD25+ T cells and provides an alternative cell-surface marker to FOXP3 for detecting natural Tregs (CD4+CD25+CD127lo).(2)
Natural Tregs account for 5% to 10% of the total CD4 T-cell population and are derived from thymic precursors.(3) Since CD25 is also expressed on activated T cells, the concomitant use of CD127 permits the differentiation of Tregs from activated T cells.(4) Natural Tregs express the memory marker CD45RO and have limited ability to proliferate. However, within the CD4+CD25+Treg population, there is a subset of Tregs that express the CD45 isoform generally associated with naive T cells (CD45RA), and this subset has been called natural naive (Nn) Tregs. Nn Tregs are most prominent in young adults and decrease with age along with the rest of the naive CD4 T-cell population.(5) Like other naive T cells, Nn Tregs have high proliferative capacity, as well as the suppressor activity of other Treg subsets. Evidence suggests that Nn Tregs also have a thymic ancestry and are the precursors of the natural Tregs (that are of the memory, antigen-experienced phenotype) and appear to be composed of T cells with self-reactive T-cell receptors.(5)
Other subsets of Tregs include the T-helper 3 (Th3) cells, which secrete high levels of TGF-beta 1 and can be induced by oral administration of antigen, and regulatory T-class 1 (Tr1) cells, which secrete interferon-gamma and IL-10.(5) These Treg subsets are most likely induced in the periphery and are responsible for peripheral tolerance to self-antigens. The suppressive activity of Th3 and Tr1 cells are related to the cytokines they produce, TGF-beta 1 and IL-10, respectively.
The absence of Tregs as a result of variants in the FOXP3 gene causes a primary immunodeficiency called IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked inheritance).(6) Patients with IPEX have a complex manifestation of symptoms including severe watery diarrhea due to significant villous atrophy and lymphocytic infiltration of bowel mucosa, early-onset autoimmune endocrinopathies involving the pancreas or thyroid, and a dermatitic (eczematous) rash. In addition, there are other autoimmune manifestations including autoimmune cytopenias and autoimmune hepatitis. Kidney disease is quite common in these patients. Finally, these patients also have a significant predisposition to infections including sepsis, pneumonia, meningitis, and osteomyelitis.(6) Decreased FOXP3+CD4+CD25+Tregs have been reported in other inborn errors of immunity.(7)
There is an expansion of Nn Tregs in patients with monoclonal gammopathy of undetermined significance and multiple myeloma, likely as a response to the process of malignant transformation.(8) Expansion of Tregs has also been reported in other neoplasias including B-cell chronic lymphocytic leukemia, Hodgkin disease, and solid tumors.
The absolute counts of lymphocyte subsets are known to be influenced by a variety of biological factors, including hormones, the environment, and temperature. The studies on diurnal (circadian) variation in lymphocyte counts have demonstrated progressive increase in CD4 T-cell count throughout the day, while CD8 T cells and CD19+ B cells increase between 8:30 am and noon, with no change between noon and afternoon. Natural killer cell counts, on the other hand, are constant throughout the day.(9) Circadian variations in circulating T-cell counts have been shown to negatively correlate with plasma cortisol concentration.(10-12) In fact, cortisol and catecholamine concentrations control distribution and, therefore, numbers of naive versus effector CD4 and CD8 T cells.(10) It is generally accepted that lower CD4 T-cell counts are seen in the morning compared with the evening,(13) and during summer compared to winter.(14) These data therefore indicate that timing and consistency in timing of blood collection is critical when serially monitoring patients for lymphocyte subsets.